STABILITY OF PERMANENT ROTATIONS OF A SYMMETRIC SOLID

PMM Vol. 40, № 1, 1976, pp. 171-173
N. G. APYKHTIN
(Moscow)
(Received November 12, 1974)

We establish that a heavy solid with one fixed point can execute, in the Lagrange case, steady rotations about an axis situated arbitrarily within the body, in addition to a rotation about the dynamic symmetry axis. By combining the integrals of perturbed motion, we find sufficient conditions for the stability of the permanent rotation under consideration. We also indicate the necessary conditions of stability, using the system of the first approximation equations.

The stability of the rotation of a heavy solid with one fixed point about the dynamic symmetry axis situated vertically, was investigated in [1] for the Lagrange case. The necessary and sufficient condition for this rotation in a more general force field was obtained in [2].

Let us consider a solid with one fixed point O, the principal moments of inertia of which are $A=B \neq C$, moving in a field of force which admits a force function $U=$ $U\left(\gamma_{3}\right)$, where γ_{3} is the cosine of the angle between the dynamic symmetry axis O_{z} and the spatially fixed axis $O_{z_{1}}$. The Euler-Poisson equations in this case have the form

$$
\begin{align*}
& p^{*}=(1-\delta) q r-\gamma_{2} u_{3}, \quad q=(\delta-1) p r+\gamma_{1} u_{3}, \quad r^{*}=0 \tag{1}\\
& \gamma_{1}^{*}=r \gamma_{2}-q \gamma_{3}, \quad \gamma_{2}^{*}=p \gamma_{3}-r \gamma_{1}, \quad \gamma_{3}^{*}=q \gamma_{1}-p \gamma_{2} \\
& \delta=C / A, u_{3}=d U / d \gamma_{3}
\end{align*}
$$

where p, q and r are the respective projections of the instantaneous angular velocity on the principal axes of inertia $O x, O y$ and $O z$ of the body and γ_{1}, γ_{2} and γ_{3} are the direction cosines of the $O z_{1}$-axis in the $O x y z$ coordinate system.

In addition to the particular solution $p=q=0, r=\omega, \gamma_{1}=\gamma_{2}=0, \gamma_{3}=1$, Eqs. (1) admit the following particular solution just as in the case of a heavy solid [3]

$$
\begin{align*}
& p=\omega l_{1}=0, \quad q=\omega l_{2}, \quad r=\omega l_{3}, \quad \gamma_{1}=l_{1}=0, \quad \gamma_{2}=l_{2}, \quad \gamma_{3}=l_{3}, \quad \omega^{2}= \tag{2}\\
& u_{3}{ }^{\circ} l_{4}(1-\delta) l_{3}, u_{3}^{\circ}=\left(d U / d \gamma_{3}\right)_{\gamma_{3}=l_{3}}
\end{align*}
$$

Here ω denotes the angular velocity of rotation and the constants l_{1}, l_{2}, l_{3} are the direction cosines of the $O_{z_{1}}$-axis in the $O x y z$-axes satisfying the condition $l_{1}{ }^{2}+l_{2}{ }^{2}+l_{3}{ }^{2}=$ 1. Choosing $l_{1}=0$ does not affect the generality. In fact we can rotate the x - and y-axes in the equatorial plane of the inertia ellipsoid of the solid in such a way, that the permanent axis $O z_{1}$ is in the same plane as the $O z$ - and $O y$-axis and is orthogonal to the $O x$-axis.
The solution (2) of (1) corresponds to the rotation of the solid at a specified angular velocity ω about the $O_{z_{1}}$-axis situated arbitrarily within the body, except when $l_{3}=0$, in which case the angular velocity becomes infinite. The admissible conditions of the problem are represented by the permanent axes for which the quantity ω^{2} is positive, and are determined by the inequality $u_{s}{ }^{\circ} /(1-\delta) l_{s}>0$.

Let us investigate the stability of the motion (2) with respect to the variables q, r, γ_{2}, q_{3} and $q-\omega l_{2}, p-\omega \gamma_{1}$. We set

$$
\begin{equation*}
p=x_{1}, q=\omega l_{2}+x_{2}, r=\omega l_{3}+x_{3}, \gamma_{1}=y_{1}, \gamma_{2}=l_{2}+y_{2}, \gamma_{3}=l_{3}+y_{2} \tag{3}
\end{equation*}
$$

in the perturbed motion. The equations of the perturbed motion obtained from (1) with help of (3) admit the following first integrals:

$$
\begin{align*}
& V_{1}=x_{1}^{2}+x_{2}^{2}+\delta x_{3}^{2}+2 \omega\left(l_{2} x_{2}+\delta l_{3} x_{3}\right)-2\left(u_{3}{ }^{\circ} y_{3}+1 / 2 u_{33}{ }^{\circ} y_{3}^{2}\right)+\ldots= \tag{4}\\
& \text { const, } \quad V_{2}=x_{1} y_{1}+x_{2} y_{2}+l_{2} x_{2}+\omega l_{2} y_{2}+\delta\left(l_{3} x_{3}+\omega l_{3} y_{3}+\right. \\
& \left.x_{3} y_{3}\right)=\text { const, } \quad V_{3}=y_{1}^{2}+y_{2}^{2}+y_{3}^{2}+2\left(l_{2} y_{2}+l_{3} y_{3}\right)=0, \quad V_{4}=x_{3}= \\
& \text { const, } u_{33}^{\circ}=\left(d^{2} U / d \gamma_{3}^{2}\right)_{\gamma_{3}=l_{3}}
\end{align*}
$$

where the dots denote terms of at least third order in y_{3}.
To study the stability of the unperturbed motion (2) with respect to the variables r, $\gamma_{3}, p-\omega \gamma_{1}$ and $q-\omega \gamma_{2}$, we construct the Liapunov function according to the Chetaev method, in the form of the following quadratic combination of the integrals (4):

$$
\begin{align*}
& V=V_{1}-2 \omega V_{2}+\omega^{2} V_{3}+\lambda V_{4}^{2}=\left(x_{1}-\omega y_{1}\right)^{2}+\left(x_{2}-\omega y_{2}\right)^{2}+(\delta+ \tag{5}\\
& \text { ג) } x_{3}^{2}-2 \omega \delta x_{3} y_{3}+\left(\omega^{2}-u_{33}{ }^{\circ}\right) y_{8}^{2}+\ldots
\end{align*}
$$

The quadratic part of the function (5) is positive-definite in the variables $x_{1}-\omega y_{1}, x_{2}-$ $\omega y_{2}, x_{3}$ and y_{3}, provided that the inequality

$$
(\delta+\lambda)\left(\omega^{2}-u_{38}{ }^{\circ}\right)-\delta^{2} \omega^{2}>0
$$

holds. This can be made to hold by appropriate choice of the constant λ, provided that the condition

$$
\begin{equation*}
\omega^{2}-u_{33}^{\circ}=u_{9}^{\circ} /(1-\delta) l_{3}-u_{33}^{\circ}>0 \tag{6}
\end{equation*}
$$

holds.
Since under the condition (6) the function (5) is positive-definite for sufficiently small values of y_{3} and its derivative is identically equal to zero by virtue of the equations of pertumed motion, therefore the inequality (6) represents the sufficient condition of stability of the unperturbed motion (2) with respect to the variables $p-\omega \gamma_{1}, q-\omega \gamma_{2}, r$ and γ_{3} (see Rumiantsev theorem in [4]).

The stability with respect to r follows from the fourth integral of (4), hence the inequality (6) is a sufficient condition of stability with respect to the angle of nutation $\theta\left(\cos \theta=\gamma_{3}\right)$.

To study the stability of the unperturbed motion (2) with respect to the variables q, r, γ_{2}, γ_{3} and $p-\omega \gamma_{1}$ we choose the Liapunov function in the form

$$
\begin{align*}
& V=V_{1}-2 \omega V_{2}+\omega^{2} V_{3}+\lambda V_{4}^{2}+\omega x_{2} V_{3} / l_{2}=\left(x_{1}-\omega y_{1}\right)^{2}+x_{2}^{2}+ \tag{7}\\
& \omega^{2}{y_{2}}^{2}+(\delta+\lambda) x_{3}^{2}-2 \omega \delta x_{3} y_{3}+\left(\omega^{2}-u_{33}{ }^{\circ}\right) y_{3}^{2}+2 \omega l_{3} x_{2} y_{3} / l_{2}+\ldots
\end{align*}
$$

Function (7) is positive-definite in sufficiently close neighborhood of the coordinate origin of the x_{i}, y_{i} variable space, if its quadratic part is positive-definite. The latter takes place when the condition

$$
(\delta+\lambda)\left[\omega^{2}\left(1-l_{3}^{2} / l_{2}^{2}\right)-u_{33}{ }^{\circ}\right]-\delta^{2} \omega^{2}>0
$$

holds. This in tum is true for sufficiently large values of λ, provided that the inequality

$$
\begin{equation*}
\omega^{2}\left(1-l_{3}^{2} / l_{2}^{2}\right)-u_{33}^{\circ}=u_{3}^{\circ}\left(1-l_{3}^{2} / l_{2}^{2}\right) /(1-\delta) l_{3}-u_{33}^{\circ}>0 \tag{8}
\end{equation*}
$$

holds.

The derivative of (7) has, by virtue of the equations of perturbed motion, the form $V^{*}=\omega x_{2} \cdot V_{3} / l_{2}=0$, and this is correct since $V_{3}=0$. Therefore, on the basis of the Rumiantsev theorem [4] the inequality (8) is a sufficient condition of stability of the unper turbed motion (2) with respect to the variables $p-\omega \gamma_{1}, q, r, \gamma_{2}$ and γ_{3}.
The unstable permanent rotations (2) can be separated out by considering the linearized system of equations of perturbed motion

$$
\begin{align*}
& x_{1}{ }^{\circ}=(1-\delta) \omega\left(l_{3} x_{2}+l_{2} x_{3}\right)-u_{8}{ }^{\circ} y_{2}-l_{2} u_{33}{ }^{\circ} y_{3}, \quad x_{2}{ }^{\circ}=(\delta-1) \omega\left(l_{8} x_{1}+\right. \tag{9}\\
& \left.l_{1} x_{3}\right)+u_{3}{ }^{\circ} y_{1}, \quad y_{1}=-l_{8} x_{2}+l_{2} x_{3}+\omega\left(l_{3} y_{2}-l_{2} y_{3}\right), \quad y_{2}{ }^{\circ}=l_{3} x_{1}- \\
& \omega l_{3} y_{1}, \quad y_{3}{ }^{\circ}=-l_{2} x_{1}+\omega l_{2} y_{1}, \quad x_{3}{ }^{\circ}=0
\end{align*}
$$

The characteristic equation of (9) has the form

$$
\begin{equation*}
\sigma^{4}\left(\sigma^{2}+g_{0}\right)=0, g_{0}=\omega^{2}\left[1+(1-\delta)^{2} l_{3}^{2}\right]-u_{33}{ }^{\circ} l_{2}^{\circ}+2 u_{3}{ }^{\circ} l_{3} \tag{10}
\end{equation*}
$$

It is clear that when $g_{0}<0$, one of the roots of (10) is positive and the motion (2) in its first approximation will, by the Liapunov theorem on stability, be unstable.

REFERENCES

1. Chetaev, N. G. , On the stability of rotation of a rigid body with a fixed point in the Lagrange case. PMM Vol. 18, № $1,1954$.
2. Beletskii, V.V., Some problems in the motion of a rigid body in the Newtonian force field. PMM Vol. 21, № $6,1957$.
3. Staude, O. , Über permanente Rotationsachsen bei der Bewegung eines schweren Körpers um festen Punkt. J. reine und angew. Math. , 1894, Bd. 113.
4. Rumiantsev, V.V., On the stability of motion with respect to a part of the variables. Moscow, Vestn. MGU, №4, 1957.

Translated by L. K.
UDC 517.949.2

CERTADN PARTICULAR Cases of STABMITY in first approximation OF DIFPERENCE SYSTEMS

PMM Vol. 40, № 1, 1976, pp. 174-176
V. P. SLLAKOV
(Novocherkassk)
(Received July 31, 1973)

The results of this paper can be regarded as a transposition of the results of Chetaev obtained for the finite systems of differential equations [1] to the denumerable systems of the finite difference equations. We use the concepts of [2].

Let us consider the system

$$
\begin{equation*}
y_{s}(m+1)=\sum_{i=1}^{\infty} p_{s i}(m) y_{i}(m), \quad m=0,1, \ldots \tag{1}
\end{equation*}
$$

Here and henceforth $s=1,2, \ldots$, the functions $p_{s i}$ are bounded and the series $\left|p_{p_{11}}(m)\right|+\left|p_{g 2}(m)\right|+\ldots$ converge uniformly in m for $0 \leqslant m<\infty$. We define $\|y(m)\|=\sup _{s}\left|y_{s}(m)\right|$.

