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We establish that  a heavy solid with one fixed point can execute ,  in the Lagrange 
case, steady rotations about an axis situated arbitrari ly within the body, in addi-  
t ion to a zotation about the dynamic  symmetry  axis. By combining the integrals 
of perturbed motion,  we find sufficient conditions for the s tabi l i ty  of the pe rma-  
nent rotat ion under consideration.  We also indica te  the necessary conditions of 
s tabi l i ty ,  using the system of the first approximation equations. 

The s tabi l i ty  of the rotat ion of a heavy solid with one fixed point about the 
dynamic  symmetry  axis si tuated ver t ica l ly ,  was invest igated in [1] for the La- 
grange case. The necessary and sufficient condit ion for this rotat ion in a more 
genera l  force f ield was obtained in [2]. 

Let us consider a solid with one fixed point O, the principal  moments of iner t ia  of 
which are A = B d= C, moving in a field of force which admits a force function U = 
U (y3), where ys is the cosine of the angle between the dynamic  symmetry  axis Oz and 
the spat ia l ly  fixed axis Ozz. The Euler-Poisson equations in this case have the form 

p" = (t - -  8) qr - -  V2ua, q" = (8 - -  t) p r  + 71us, r" = 0 (1) 

Yz" = rYs - -  ql's, 72" = PYa - -  ~z ,  ~'a" = q~'t - -  P'~2 
6 = C / A ,  us = dU / d'~s 

where p,  q and r are the respect ive projections of the instantaneous angular veloci ty  
on the principal  axes of iner t ia  Oz, Oy and Oz of the body and ?z, ?2 and ~?s are the 
direct ion cosines of the Ozz-axis in the Ox//z coordinate system. 

In addi t ive to the par t icular  solution p = q = 0, r = co, ~z = 72 = 0, Ya = t ,  Eqs.(1) 
admit  the following par t icular  solution just as in the case of a heavy solid [3] 

p = col z = 0, q = ~/2, r = 6013, "~1 ~ "  11 = 0 ,  ~2 = 12, "~3 = ls, co 2 = (2) 

us °/~ (t - -  G) la, ua ° = (dU / dvs)~3=z, 

Here co denotes the angular veloci ty  of rotat ion and the constants ll, 12, 12 are the d i rec-  
t ion cosines of the Ozz-axis in the Oxyz -axes satisfying the condit ion l l  2 + 12 2 - ~  13 2 : 

1. C h o o s i n g  I t = 0 does not affect  the general i ty .  In fact  we can rotate  the x .  and 
/ / -axes  in the equator ia l  plane of the iner t ia  e l l ipsoid of the solid in such a way, tha t the  
permanent  axis Oz~ is in the same plane a s t h e  Oz-  and Oy-ax i s  and is orthogonal to the  

O x - axis, 

The solution (2) o f ( l )  corresponds to the rotat ion of the solid at a specif ied angular 
veloci ty  co about the Ozz-axis situated arbitrari ly within the body, except  when l s = 0, 
in which case the angular veloci ty  becomes infinite.  The a d m i n i b l e  conditions of the 
problem are represented by the permanent  axes for which the quantity ta 2 is positive, and 
are determined by the inequal i ty  us ° / (t - -  5) ls > 0. 
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Let us investigate the stability of the motion (2) with respect to the variables q, r, 

Y~, qs and q - - ( 0 1  s , p - 0 ~ r  We set 

p = zx,  q = (0ls-4- z2, r = (0l s ~- zs, Y1 = Yl, Y2 = 12 q- Y2, Ya = l a - k  Ys (3 )  

in the perturbed motion. The equations of the perturbed motion obtained from (1) with 
help of (3) admit the following first integrals: 

Vx = xz a 4- xs s "~ 6x8 s -~- 2(0 (lsx s ]-  6!3xs)--2(ua°ya ~ 1/SU3q°y3 2) -~- . . . .  (4 )  

c o n s t ,  Vl = XlYl -~ XiltS -4- 12Xz "~ (01~y~ "~- 5 (l~x a -4- (0lsy s "21- 

xays) = c o n s t ,  V a ~ yl  2 -~- y2 2 -~ y3 ~ ~- 2 (l~y 2 -~ 13Y3) ~- - "  0, V 4 ~ x 3 - - ~  

coast, usa ° = (d2U / d~32)T3=/, 
where the dots denote terms of at least third order in y , .  

To study the stability of the unperturbed motion (2) with respect to the variables r, 
Ys, P - -  m~1 and q - -  (0~2 , we construct the Liapunov function according to the Chetaev 
method, in the form of the following quadratic combination of the integrals (4): 

V = V1 - -  2(0V~ + (0sVs + ~V4" = (zl - -  (0yl) 2 + (z~ --(0y2) s + (8 + (5) 

~) x s s  2(08xay s .4_ ((02 _ ussO) yss -4- . . . 

The quadratic part of the function (5) is positive-definite in the variables.x I - -  (0Yl, x2 - -  
(0Ys, xs and Ys, provided that the inequality 

(8 + ~) ((0~ - -  u .  °) - -  8~(0 s > 0 

holds. This can be made to hold by appropriate choice of the constant ~, provided that 
the condition 

o a l - -  u .  ° = us  ° I ( i  - -  8) 13 - -  u .  ° >  0 (6)  
holds. 

Since under the condition (6) the function (5) is positive-definite for sufficiently small 
values of Ys and its derivative is identically equal to zero by virtue of the equations of 
perturbed motion, therefore the inequality (6) represents the sufficient condition of sta- 
bility of  the unperturbed motion (2) with respect to the variables p - -  (0¥1, q - -  (0~s, r 
and ?a (see l~miantsev theorem in [4]). 

The stability with respect to r follows from the fourth integral of (4), hence the ine- 
quality (6) is a sufficient condition of stability with respect to the angle of nutation 
0 (cos 0 = ~3). 

To study the stability of the unperturbed motion (2) with respect to the variable~ q, r, 
Y2, ?~ and p - -  (0ylwe choose the Liapunov function in the form 

V = 111 - -  2(0Vj "-}- (0sVa "-}- ZVa 2 -4- (0x2Vs / ls = (xl - -  (0yl) ~ "~- x21 -~ (7) 
(0Sy22 -{- (5 -~ ),) za s - -  2(08xsYa ~- ((0~ - -  u3a °) ya ~ -{- 2(01sx~y~ / l~ "}- . . .  

Function (7) is positive-definite in sufficiently close neighborhood of the coordinate ori- 
gin of the x~, yi variable space, if its quadratic part is positive-definite. The latter 
takes place when the condition 

(8 + ~) [co s ( i  - -  ls ~ / l ~ )  - -  u ~  °] - -  8s(0 ~ > 0 

holds. This in turn is true for sufficiently large values of ),, provided that the inequality 

( 0 ~ ( t - - l ,  ~ / l ~  s ) - u ~  ° = u s  ° ( t - l s  ~ / l ~  ~ ) / ( i - 8 ) l ~ - u a ,  ° > 0  (8)  
holds. 



The der ivat ive of (7) has, by virtue of the equations of perturbed motion,  the form 
V" ~--- t o x 2 " V  3 / l 2 = 0 ,  and this is correct  since Vs = 0. Therefore,  on the basis of the 
Rumiantsev theorem [4] the inequal i ty  (8) is a sufficient condit ion of s tabil i ty of theunper .  

turbed motion (9.) with respect to the variables p - -  to71, q, r, 72 and ~'8- 
The unstable permanent  rotations (2) can be separated out by considering the l inear -  

ized  system of  equations of perturbed motion 

X 1" ~ - - -  ( i  - -  6) to (lax s'~ 12X s ) -  us°Y2-- /SUss°Ys, X s" = (6 - -  i )  to (/$X t J ~  ( 9 )  

l l z s )  -~ ua°Yx, Yl" = - -  lsxs -~- lsx3 -}- to (lay s - -  lgYs), Y2" = laxt - -  

tolaYx, Ya" ~- - -  lzxx nu tolsYx, x 3" = 0 

The characteri-ctic equat ion o f (9 )  has the form 

04 ( °2 -J- go) = 0, go = (02 [i  -J- ( i  - -  6) 2/a ~] - -  uaa°/2 ° -~- 2us°ls (10) 

It  iS c lear  that  when go < 0 ,one  of the roots of  (10) is Po~t ive and the motion (2) 
in its first approximat ion writ, by the Lialmnov theorem on stabi l i ty ,  be unstable.  
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The results of this paper can be regarded as a transposition of the results of Che- 
taev obtained for the f inite systems of dif ferent ia l  equations [1] to the denumer-  
able systems of the f inite difference equations. We use the concepts of [2].  

Let us consider the system oo 

y, (ra + i )  = ~ P.t (ra) Yt (ra), m = 0, i . . . .  (1) 
i : 1  

Hem and henceforth s = t ,  2 . . . . .  tim functions Psi am bounded and the series 
[ P.t  (m) J -4- [ Psi (m) J --~ • • • converge uniformly in m for 0 ~ m ~ oo. We define 

y (m) U = sup.  I y.  (~) I. 


